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Axisymmetric flow of viscous incompressible fluid between a rotating porous disk 
and an impermeable fixed plane is investigated. It is shown that with injection and 
suction through a porous disk rotating with sufficiently large angular velocity there 
are many isolated steady self-similar solutions. In  the case of suction through a fixed 
porous disk a t  a certain Reynolds number there exists bifurcation of the stable 
rotational regime of flow, implying a spontaneous break of the flow symmetry and 
an arbitrary rise of the fluid rotation within the framework of self-similarity. This 
unusual effect is discussed in detail, and the results of a relevant experiment are 
presented. Another unusual result, is the existence of multicellular regimes consistent 
with suction, when the lift force acting on a rapidly rotating porous disk is 
anomalously large; in this case some of these regimes are stable relative to self- 
similar perturbations. 

With sufficiently strong suction and rotation the stationary solution with large lift 
becomes unstable and the regime of self-oscillations arises. Diagrams of the possible 
stationary flow regimes have been constructed, and the stable ones have been 
identified. At the limit of vanishing viscosity we find, in the case of the suction, non- 
classical boundary layers on the solid surfaces characterized by a finite jump of the 
normal component of the velocity and unlimited tangential components. In  this 
limit, in the interior flow region the singular non-viscous solution with an infinite 
velocity of rotation arises, while all limited non-singular admissible non-viscous 
solutions are not stable. 

1. Introduction 
Starting with the basic work by Karman (1921), where a self-similar solution of the 

complete Navier-Stokes equations for flow above a rotating disk was examined, 
many papers have been devoted to the study of this and related solutions. In  the fine 
reviews by Parter (1982) and Zandbergen & Dijkstra (1987) one can find the history 
of the problem and the current status of investigations into the problem of KBrman’s 
self-similar flow between two impermeable disks. One of the major results of the 
analysis is the non-uniqueness of the exact self-similar solutions of the Navier-Stokes 
equations, where the additional solutions originate from the pairs which are not 
related by the bifurcational curve and their number increases infinitely with the 
growth of Reynolds number. Newly arising solutions are characterized, as a rule, by 
a multicellular structure (Mellor, Chapple & Stokes 1968). However, unicellular 
solutions can also exhibit non-uniqueness. This non-uniqueness of the flow regimes 
between impermeable disks has been experimentally verified (Mellor et al. 1968 ; 
Nguyen, Ribault & Florent 1975; Dijkstra & Heijst 1983; Szeri et al. 1983a) and it 
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has been found that for each particular experimental installation only one regime of 
the flow exists, though it can be of different types at different installations. 
Experiments have shown considerable influence of boundary effects, extending 
approximately to half the disk radius. Therefore some non-self-similar problems for 
the flow between disks of finite size have been examined by Adams & Szeri (1982), 
Dijkstra & Heijst (1983) and Brady &, Durlofsky (1986). 

Numerical solutions of these problems have shown that in the non-self-similar 
formulation there is only one solution and it is in good agreement with the results of 
experiments (Dijkstra & Heijst 1983). Hence one can draw the conclusion that the 
boundary conditions on the cylindrical surface limiting the disks are the determining 
ones for the choice of one of the possible self-similar solutions. However, the question 
of whether there exist such external boundary conditions under which stable 
multicellular regimes are realized is left open. The stability of these flows is discussed 
in the review by Zandbergen & Dijkstra (1987). In  this connection the work by Szeri 
et al. (19833) should also be mentioned. A considerable number of papers (see Parter 
1982 ; Zandbergen & Dijkstra 1987) is devoted to the numerical investigation of the 
problem in which a great number of solutions has been found. Determination of the 
entire set of solutions with arbitrary given angular velocities meets pronounced 
computational difficulties. They are attributed to the fact that  all multicellular 
solutions do not arise due to the bifurcation of the unicellular solution (Rasmussen 
1973) and they are isolated, that is not typical, in general, for hydrodynamics. 

In the work by Batchelor (1951) K&rm&n’s self-similar solutions were extended to 
flows above a rotating impermeable disk with prescribed fluid rotation at infinity and 
flows between infinite rotating porous disks with given uniform suction or injection. 
The presence of additional parameters of injection or suction complicates 
significantly the problem. Thus, the analysis of more complicated flows between 
rotating disks, given uniform injection or suction, by Stuart (1954), Dorfmann 
(1966), Elkouh (1968, 1970), Evans (1969), Rasmussen (1970), Kuiken (1971), Jawa 
(1971), Ockendon (1972), Narajana & Rudraiah (1972), Wang (1976), Wilson & 
Schryer (1978), Wang & Watson (1979), Elcrat (1980), Coselskaya & Lumkis (1980), 
Petrovskaya (1982) have, for the most part, been done without any connection with 
the problem of the non-uniqueness of the Navier-Stokes equation solutions. 
However, as will be shown here, the presence of sufficiently large suction in the 
problem with fixed disks results in non-uniqueness of a new type, namely bifurcation 
of rotation that has a non-trivial physical interpretation in the form ofa spontaneous 
rise in the flow rotation. 

A problem arises concerning the description of the entire set of solutions for self- 
similar Ktirmtin Aows depending on the values of the angular velocities of the disks 
and the velocity of uniform injection or suction. We believe that this problem is 
solved to some extent in the present work by reducing the boundary problem of the 
flow between a rotating porous disk and a plane to  an initial-value problem with a 
biparametrical family of solutions. Such a representation turns out to be well-posed 
and permits, in principle, the determination of the whole family of solutions with the 
help of a simple algorithm. Since numerical calculations show that there exists a 
multiplicity of isolated solutions, numerous attempts have been made in rigorous 
mathematical analysis of the flow between the disks to prove or disprove the 
existence of such solutions. For the problem with impermeable disks a sufficiently 
complete representation of the corresponding results can be found in the reviews 
mentioned above. For the problem with injection or suction, only some individual 
results are known. Elcrat (1976) has proved the theorem of existence and uniqueness 
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for non-rotational fluid motion between fixed porous disks with arbitrary uniform 
injection or suction, but there are no accurate results dealing with the self-similar 
flow between rotating disks with uniform injection or suction. Nevertheless, non- 
viscous analysis permits the determination of some features of the solution behaviour 
in this case. Section 3 considers a general form of non-viscous vortex-type solution, 
which permits the determination, in the limit of vanishing viscosities, of a finite 
number of solutions a t  non-zero suction or injection, whereas in the case of 
impermeable disks a number of solutions is  a t  least countably infinite (Parter 1982). 
At v + 0 the non-viscous analysis can be supplemented by numerical investigation, 
with the help of which the regions of existence of various types of solution have been 
determined on the basis of a special algorithm. In the present paper, to make the 
solution of the self-similar problem of the flow between two infinite porous disks more 
tractable for analysis, as a whole, the problem of the fluid flow between a rotating 
porous disk and a fixed plane is examined alone. This problem models qualitatively 
the flow under a body on an air cushion and therefore it can be of interest from a 
practival viewpoint. In  this case the flow is defined by two parameters: Reynolds 
number R = Vh/v  based on the injection or suction velocity V ;  and the twisting 
parameter K = SZh/V, where h is a disk-to-disk distance and 52 is the angular velocity 
of the porous disk. The choice of K instead of the traditionally used rotational 
Reynolds number R, = SZh2/v or Ek = 1/R, is more convenient for the interpretation 
of data related to a disk on an air cushion with rotation, since K characterizes the 
geometry of the device twisting the flow only (Goldshtik 1981). In the general case 
we need two more parameters: the ratio of disk angular velocities and the ratio of 
suction or injection velocities. 

2. Formulation 
Let z = 0 correspond to a fixed impermeable plane and z = h to a rotating porous 

The NavierStokes equations for axisymmetric motion of incompressible fluid are 
disk through which uniform injection or suction occurs. 

written in the form (notation is conventional) 

We shall seek the self-similar KarmBn solution in the form 

v, = v,(z, t ) ,  v, = v,(r, z ,  t )  = rw(z, t ) .  (2 .5)  

According to (2.4) we have v, = -+mi, where the prime denotes differentiation 
with respect to z .  According to (2.1) aplar = prF(z, t ) ,  then according to (2.3) ap/& = 

pf(z, t ) ,  so that a2p/araz = 0. Hence, F = 0 and F = F( t ) .  For further calculations 
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i t  is convenient to put F = -;a2&, where a = a(t)  is the value to be determined, and 
S = +_ 1. Thus we obtain 

Substitution of these results in (2.1) yields the equation 

Differentiation of this equation with respect to z allows the elimination of the 
unknown a: 

(2.8) 
av. 
2 = v v y  - 2, 2) f f f - 4ww’. 
at Z Z  

Similarly, proceeding from (2.2) we obtain the equation 

aw 
- = vw”-v2w~+v;w.  
at 

For the system of equations (2.8), (2.9) no-slip boundary conditions, except initial 
ones, are prescribed : 

W,(O) = 0, VL(0) = 0, w ( 0 )  = 0, 

v,(h) = V ,  vi(h) = 0, w(h) = 0. 
(2.10) 

The number of conditions (2.10) corresponds to  the order of system (2.8), (2.9). In the 
present paper it is the stationary problem that is basically under study, in which 
av,/at = 0, awla t  = 0. After making i t  non-dimensional two independent physical 
parameters arise in the stationary case: Reynolds number R = V h / v ;  and the 
magnitude of flow twisting K = O h / V .  Even in the stationary case the nonlinear 
boundary problem (2.8)-(2.10) is a difficult one for both analytical study and the 
numerical solution. To study the whole set of possible solutions it is expedient to 
reduce the stationary boundary-value problem to a Cauchy problem. It is convenient 
to introduce new variables, putting 

(2.11) 

Then the stationary equations (2.7), (2.9) can be written in a form containing no 
parameters : 

(2.12) 

y” = Wy’-yW, (2.13) 

where the prime denotes differentiation with respect to  x. Note that according to 
(2.6) the variable a has dimension s-l, so that the variables x, W and y are non- 
dimensional. An auxiliary initial-value problem is formulated at z = 0 : 

W = O ,  W=O, W = P ,  y = O ,  y ’ = Q .  (2.14) 

It contains only two parameters, P and Q,  which allows the complete investigation 
of the problem to be carried out separately for 6 = 1 and 6 = - 1.  Changing the 
parameters - co < P < CO, - co < Q < 00 one can obtain the whole set of solutions 
of the initial boundary-value problem with all admissible values of R and K .  

The initial-value problem (2.12)-(2.14) is related to the initial boundary-value 
problem by integrating the system of equations for a value x = x, such that the 
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penultimate condition (2.10) is satisfied, i.e. W(x,) = 0. I n  this case the variables 
W, = W(x,) and 7, = y ( z m )  are determined. Using (2.11) they can be readily related 
to the initial parameters of the problem, R and K .  Having previously determined the 
variable a = x: v/h*, we have 

R = W,X,, K = y,xm/Wm. (2.15) 

The initial-value problem (2.12)-(2.14) has a unique analytical solution for every 
set of P ,  &, 6, to  which a single, several or no values x ,  > 0 can correspond, where 
W=O. 

We can readily calculate the force of 'flowwall' interaction, if we use the 
expression for the tensor of impulse flux density : 

Proceeding from (2.3) for the stationary case it is not difficult to  obtain 

Then taking account of (2.11) and the equality a = ux;/h2 we find 

n,, = po--6x~+-x;(;W2-w). pu2r2 P V 2  

4h4 hZ 

When calculating the force acting on a disk of large radius L the last component of 
this expression can be neglected. Therefore, choosing the constant p ,  such that 
p ( L )  = 0 we obtain the following expression for the lifting force acting on the porous 
disk : 

For the force moment on any wall we have 

(2.16) 

(2.17) 

It is simpler to solve the outlined program numerically, leaving the analytical 
study for limiting cases only. 

3. Physical analysis 
First, let us consider the variable 6, which according to (2.6) determines 

unambiguously the sign of the radial pressure gradient. The zone of increased 
pressure near the flow symmetry axis corresponds to the value 6 = 1 and the 
rarefaction zone corresponds to  6 = - 1 .  

A rigorous asymptotic analysis of the problem presents considerable difficulties 
and is hardly justified. Nevertheless, for a preliminary study of the qualitative 
solution behaviour it is necessary to consider the limiting cases v --f 00 and v -+ 0. At 
the physical level we proceed from the formulation of the stationary (a/at = 0) 
problem (2.8)-(2.10). 

In  the case u - t  00 after eliminating nonlinear terms we obtain 

vvr = a26, w" = 0. 
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The solution satisfying the conditions (2.10) has the form 

The last relation shows that 6 = 1 corresponds to injection (V  < 0) and 6 = - 1 
corresponds to suction. The relation between the parameters €2, K and P, Q is of the 
form 

R = -$Pad, K = 6QfP. (3.2) 

Without any loss of generality one can assume that 52 > 0 and Q > 0. Then the sign 
of P coincides with the sign of V ,  so that in the case of suction P > 0, and injection 
P < 0. All these properties are in agreement with common sense: at  injection an 
increased-pressure zone is formed under the disk, and a t  suction vice versa - the 
rarefaction zone is formed. 

Let us now consider a stationary Lnon-viscous’ solution, putting u = 0 into (2.7) 
and (2.9). I n  this case (2.9) is easy to integrate (Dijkstra 1980): 

w = +Avz, A = const. (3.3) 

Taking into account (3.3), (2.7) takes the form 

w, v: - $L2 + $A2vL2 + a26 = 0. (3.4) 

It is also easy to obtain a general integral of (3.4): 

B ( ~ 2 + 2 a ~ & ) ;  
sinA(z+p), 

A 
v, = -+ 

A (3.5) 

where B, /3 are arbitrary constants. From (3.4) or (3.5) it follows that i t  is necessary 
to have 6 = + 1 to make v, vanish. At 6 = - I ,  as one can see directly from (3.4), 
there is a particular solution vz = const corresponding to solid-body rotation with 

Equations (3.3) and (3.5) describe a four-parameter class of vortex motion for an 
ideal fluid. By choosing the parameters A ,  B,  a, p one can, in principle, satisfy four 
out of the six conditions (2.10). Which particular conditions should be taken to 
obtain the final result follows from the specific physical formulation of the problem. 
One of the major physical requirements in this case is the absence of boundary layers 
in sections where fluid flows in (Judovich 1962). However, one should bear in mind 
that in the process of approaching the limit u + O ,  physical boundary conditions 
(2.10) can be ‘erased’ as a result of boundary-layer formation. Analysis and 
numerical calculations show that this really does occur and in this case not only no- 
slip conditions but also impermeable conditions can be ‘erased’. In  this case the 
parameters of (3.5) should be determined by detailed treatment of the approach to 
the limit in the total viscous solution. 

A sufficiently complete analysis of the problem in the case of impermeable disks 
has been expounded in the reviews by Parter (1982) and Zandbergen & Dijkstra 
(1987). In the case of rotating porous disks with uniform injection or suction the 
situation changes qualitatively. First, note that the non-viscous solution (3.3), (3.5) 

w2 = ti”. 
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can satisfy five of the six conditions in (2.10). In the case of injection the solution is 
unique and has the form 

Z 
Vsin k - sin k (z -;) 

h 
sin2 k 

, V < O ;  v, = 

Of all the conditions (2.10), the only one not satisfied by (3.6) is the no-slip condition 
vi(0) = 0. Hence, it is natural to assume that when v -+ 0, the classical boundary layer 
occurs for an impermeable plate at z = 0 under the viscous solution. When the case of 
inflow is considered, a boundary layer at the permeable disk should be absent, as 
assured by the fulfilment of the condition vi(h) = 0 for (3.6). 

The solution (3.6) is sign-dependent only at K < in. It is remarkable that at K = in 
the no-slip condition vi(0) = 0 is also fulfilled, so that in this case (3.6) is obviously 
an exact limit for the viscous solution when v+O. It should be noted that a = 0 for 
this solution, i.e. aCp/ar = 0 according to (2.6). This is seen from the relationship 

(3.8) 

obtained by substitution of (3.6), (3.7) into (3.4). If K > in, (3.6) changes sign and 
describes a multicellular regime. However, analytical solution (3.6) in the 
neighbourhood of the point zo, where v,(z0) = 0 is not appropriate. This follows 
directly from stationary equation (2.9) : 

VWI' = v, wI - v; w. (3.9) 

Both components of the right-hand side of (3.9) are zero at  first order for the 
analytical solution (3.6), whereas w"(zo) =I= 0. Hence, the viscous term cannot be 
neglected in the neighbourhood of the point zo. This means that the limiting solution 
at v -+ 0 should be constructed as a solution composed of non-viscous ones which are 
different on different sides of the point z,,, where the internal boundary layer arises. 
This situation is the same as in the theory of hydrodynamical stability when a critical 
layer arises (Lin Tsa-Tsao 1958) as a result of the degeneration of the differential 
equation (vz(zo) = 0 in (3.4)). It is most natural to construct the composite solution 
on the basis of physical considerations, assuming that a = 0 for K > in. According to 
(3.8) the increase of the value K from zero to in results in the decrease of pressure 
gradient a2S up to zero. A further increase of rotation, according to (3.8), should 
cause a pressure increase near the axis, which seems to be physically inappropriate. 
But if a = 0 at K > in then in the zone zo < z < h the solution is of the form 

z - z o  K v, = Vsin2K- w = p ;  z o = h  
h '  (3.10) 

Solution (3.10) is characterized by the fact that, at  z = zo, not only v, = w = 0 but 
also vi = 0, i.e. the fluid is at  rest at this point. In such case the stationary fluid is 
permissible over the entire zone 0 < z < zo. Such a possibility for a composite solution 
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is not unique. For instance, in the zone 0 ,< z < zo, ‘eigen’ motion is admitted with 

v, = Csin2--, w = -21,. (3.11) 

where C is an arbitrary constant. 
It should be noted that ‘eigen’ solution (3.11) is not the only possible non-trivial 

solution in the region 0 ,< z < zo. This region can be divided into any number of 
subregions, so that in every zone obtained there occurs ‘eigen’ motion of the type 
(3.11). 

According to Parter (1982) solutions of the form (3. lo), (3.11) are limiting ones for 
the viscous solution when v + 0. The magnitude of C in (3.11) can be obtained by the 
method of matched asymptotics (Dijkstra 1980) which, in the present case, is 
reduced to the following. In (3.9), v, = A ( ~ - Z , ) ~  is assumed, where A < 0 in the 
injection case under consideration. The solution of linear equation (3.9) is obtained 
analytically in the form of Kummer’s function U( -$, % , A ( ~ - Z , ) ~ / ~ U )  which has 
different asymptotical behaviour for z --f + co and z + - co , so that 

w”( + co) /w“(  - co) = - 2. (3.12) 

(We note that in the work by Dijkstra (1980) this ratio is -$ as the case A > 0 is 
considered.) It stands to reason that (3.12) is valid only under the condition that 
motion can occur on both sides of the boundary z = zo. It is clear from (3.12) that the 
fluid rotation changes to  an opposite one on crossing the boundary zo. This analysis 
shows that matched solutions have continuous v,, vi, vi, w ,  w’ a t  z = zo, but higher 
derivatives have a discontinuity. Discontinuity of the function w” a t  the point zo, 
under the condition of continuity 02, predetermines the jump of the constant k in the 
relationship w = kv,/h. Let k = k, in the region z < zo, then in accordance with (3.12) 
we have k, /K = -$. Writing the conditions of continuity in terms of the composite 
non-viscous solution (3.10) and the ‘eigen ’ solution 

the velocity field RZ K 

20 20 

z-z1 kl hn 
w = -vz; z1 = zo--, 

h Ikll 
v, = V, sin2 k, - 

h ’  
(3.13) 

determined in a certain region z1 < z < zo, we obtain relationships 

kl = - iK,  k: V, = K2V. (3.14) 

These relationships restrict an arbitrary choice of subregions with appropriate 
‘eigen’ solutions; in particular, we have z1 = h ( l - 5 ~ / 2 K ) ,  comparing (3.14) and 
(3.13) with due account of (3.10). Therefore a proper circulating zone can arise only 
a t  K > :K, since z1 > 0 should hold. If < K < in, then in the region z < zo the fluid 
is a t  rest. Notice that for K > in the solution with v, = 0 a t  z < zo is permissible, so 
that there is non-uniqueness of limiting non-viscous regimes. The number of similar 
solutions increases with the growth of K .  Generalizing (3.14), one can write 

ko = K ,  kt = -$kip1 ,  k,2 V, = k:-, (3.15) 

where i = 1 , 2 , .  . . denotes each internal boundary layer, counted out from the 
rotating porous disk. One can easily see that the location of the ( i + l ) t h  internal 
boundary layer is defined by the expression 

(3.16) 

By virtue of the limitation zi 2 0, the number of additional zones with ‘eigen’ 
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motion is determined by the value K .  Thus, according to (3.15), (3.16), in the region 
of parameter variation 

2~c(2~+’ -  1) > K-$T 2 2 7 ~ ( 2 ~ -  l),  n = 1 , 2 , 3 , .  . , 
n additional zones are possible. And in the neighbourhood of the plane z = 0, if the 
eigen zone does not occupy it, the rest condition should apply. Therefore the number 
of possible solutions is n+ 1. Take note that the number of solutions increases 
infinitely for impermeable disks when K - t  co. 

In the case of suction (V > 0) solutions (3.10), (3.13) are also permissible. However, 
the method of matched asymptotics which is applied in the neighbourhood of a 
rotating porous disk z = h yields k, = 0 under the condition of continuity for normal 
velocity v,, Let the velocity have the form 

V, = V + O ( ( h - z ) 2 ) ,  V ,  = O(h-2) 

in the neighbourhood close to  the point z = h. 
From (3.9) we find 

w = Qev@-h)/v [I +O(h-z)] .  

This relationship characterizes an equilibrium between diffusion of rotation 
propagating from the end z = h into the depth of fluid and convection due to the 
suction. In the limit when u + O ,  w + O  for all z < h. I n  this case the solution in the 
internal region of the flow is of the form 

z* 
h2’ 

v ,=V-  W E O ,  O < z < h ,  (3.17) 

but a t  z = h a thin boundary layer exists. However, in the presence of suction 
(8 = - l ) ,  as already mentioned, there is a particular non-viscous solution v, = const. 
It cannot satisfy the no-slip condition on the plane, but the Navier-Stokes equations 
(2.1)-(2.4) admit the existence of a non-classical boundary layer, on the external 
boundary of which the normal velocity v, - 1 is given. For such a boundary layer one 
can obtain in a standard manner the estimates 

6, N U, V, - 1/U, v+ 1/v, a 1/u (3.18) 

where 6, is the thickness of the boundary layer. Estimates (3.18) stipulate the 
existence of intensive boundary flows with large tangent velocities. In  particular, the 
entire radial flow is concentrated near the walls z = 0 and z = h. These boundary 
layers are consistent with the particular solution v, = const, therefore a non-viscous 
limit is permissible 

v, = const, w2 = -$z28 = const, 6 = - 1, (3.19) 

and besides (3.17) there are solutions of the form 

w1 = a/ l /2 ,  o2 = -a/ l /2 ,  a - l / u .  (3.20) 

Solutions (3.19), (3.20) are unusual in two aspects. First, they are characterized by 
discontinuities of normal velocity v, a t  the boundaries z = 0 and z = h. Secondly, 
internal rotation rises to any value when v+O, irrespective of the given value 
w(h) = 52, testifying to generation of rotation inside the flow region. But then one can 
expect such generation for 52 = 0 too. If this is so, a Reynolds number R,, may be 
found a t  which similar self-rotation arises for the first time, since (3.1) is unique for 
small R.  As is well known (Arnol’d 1978), the phenomenon of direct bifurcation is 
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accompanied by the loss of initial regime stability. Hence, the energy method is 
applicable to find the supposed point of bifurcation. 

Let us consider the problem of suction through the upper disk a t  rest for arbitrary 
R. As is known (Elcrat 1976), this problem has a unique solution on the assumption 
that v+ = 0. Multiplying the non-stationary equation (2.9) for the velocity component 
$ by w and integrating with respect to  z from 0 to h we obtain the energy 
equality 

(3.21) 

where integration has been performed by p a r k  taking into account the boundary no- 
slip conditions w(t ,  0) = w ( t ,  h)  = 0. If the right-hand side of (3.21) becomes positive 
when v decreases, then the initial motion loses stability with respect to the rotation. 
This will occur for certain if the last term is positive and the first one vanishes when 
v + 0. For an estimation of the stability loss i t  is sufficient to restrict attention to the 
case of small w when the basic flow is described by a solution without rotation, which 
changes to (3.17) with the formation of an ordinary boundary layer a t  the upper wall 
when v < 0. Therefore, a t  small viscosities the first term on the right-hand side of 
(3.21) can be evaluated using traditional estimates of boundary-layer theory : 

(3.22) 

where a,,, - (v/wo)f is the thickness of the boundary layer with respect to velocity 
v#, and wo is a certain characteristic angular velocity of rotation. Thus, the 
contribution of this integral is negligibly small when v+O. 

Using the results obtained by Elcrat (1976), one can show that the solution of the 
problem without rotation (w = 0) is monotonic: for suction av,/az > 0, and for 
injection av,/az < 0 for 0 < z < h and all values of viscosity v. I n  particular, in the 
case of suction the non-viscous limit has the form of (3.17). Therefore, the last term 
on the right-hand side of (3.21) is positive. 

Thus, the solution with suction and without rotation at sufficiently large Reynolds 
numbers R is unstable with respect to rotational motion. I n  the case of injection the 
damping of rotation follows from (3.21) for all v. 

As has already been stated, rotational instability arises with the growth of 
Reynolds number at suction through the upper disk and indicates a bifurcation of 
the stationary solution. Proceeding from (3.21) one can estimate the Reynolds 
number a t  which this bifurcation takes place. For this purpose we use a well-known 
Courant's inequality (Rectoris 1985) 

as an estimate, where the sign 2 is replaced by - . Let us evaluate the second integral 
on the right-hand side of (3.21), taking into account that  the variable av,/az does not 
change the sign, in the following form: 

where V is the velocity of suction through the upper disk. Hence, we shall find that 
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the critical Reynolds number a t  which the right-hand side of (3.21) goes to zero has 
the value 

Rcrit - in2 x 6.5. (3.23) 

It turns out that, in spite of the roughness of the estimate, an accurate calculation 
of the Reynolds number at which the rotation bifurcation occurs results in a 
magnitude close to the value in (3.23). 

Apart from the results obtained, (3.21) may be used to justify the existence of the 
particular stationary solutions (3.19), (3.20) with non-classical boundary layers. In 
fact, for such solutions both terms on the right-hand side of (3.21) have the same 
order for v -+ 0, 

that is a necessary condition for the existence of a stationary regime. Numerical 
investigation into the evolution of self-similar solutions confirms the existence of 
stable particular stationary solutions (see $5). 

4. Results of numerical calculations 
In  accordance with the programme set out in $2, the initial-value problem 

(2.12)-(2.14) will now be solved. Let us consider by way of example how integral 
curves W(x) behave at the fixed values of P = 0.5,6 = - 1 and various Q. Calculation 
data are presented in figure 1 where four integral curves are plotted. To solve the 
boundary-value problem it is necessary to search for the values x = x, so that 
W(x,) = 0. From figure 1 we see that all curves go finally to + 00 ; that it happens 
at finite x, is typical for nonlinear equations. As numerous calculations have shown, 
this property ‘to attract ’ the solutions to 00 takes place a t  all values of P, Q and 6, 
except for some special cases, e.g. at &* = 0, P* = - 1.5603, 6 = 1 the function W(x) 
is limited a t  all x. If 6 and P are positive then the function W ( x )  has no zeros a t  
x > 0. The same picture is observed a t  6 = - 1, P > 0 and sufficiently large Q, as 
curve 1 in figure 1 testifies. The decrease of Q results in the appearance of a function 
W’(x) with a two-fold zero (curve 2). With the further decrease of Q zeros part 
(curve 3), and then a new pair of roots originates (curve 4). Thus we can see that 
several solutions of boundary -value problems with different values x, = xmi and 
physical parameters R, and Ki determined by (2.15), respectively, can correspond to 
one and the same initial-value problem with fixed P and &. In the case P > 0 and 
6 = - 1 the number of such ‘related’ solutions is even and a t  P < 0 it is odd 
irrespective of 6. With the decrease of Q to zero the number of ‘related’ solutions 
increases infinitely. At the same time, for & = 0 and all values of P from the set 
{ - 1.5603 < P -= 0 for 6 = 1,  P > 0 for 6 = - l}, the solution is unique and non- 
oscillating. This irregular transition to the limit Q + O  also takes place for other 
admissible values of P: P < P* = - 1.5603 for 6 = 1, P > 0 for 6 = - 1 ,  for which 
there is no solution at all if Q = 0. It should be emphasized that the described process 
of generating the pairs of ‘related’ solutions does not directly imply the non- 
uniqueness of solutions for the initial boundary-value problem ; nevertheless it is 
related to this fact, as we shall see further. 

All calculations have been performed by the Runge-Kutta-Merson method with 
automatic choice of step, a t  the relative error 10-4-10-5. To determine the number 
of related solutions or the number of W‘(x)-function zeros for given P, &, calculations 
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FIGURE 1 .  Occurrence of ‘related’ solutions of the initial-value problem at P = 0.5, 6 = - 1 .  
Solutions originate with the decrease of &. Curve 1 corresponds to Q = 0.75, no solutions ; curve 2, 
Q = 0.677, double-degenerate solution ; curve 3, Q = 0.32, two different solutions ; curve 4, 
Q = 0.277, new pair of solutions originates. 

Q 
0‘ 

0 0.5 1.0 P, I .5 2.0 P 
FIGURE 2. Diagram of ‘related’ solutions at 6 = - 1, P > 0. P,, = 1.119, Q ,  = 0.459. 

have been carried out until the values of functions W ( x ) , y ( x )  become more than 
lolo, corresponding to their stable growth to infinity. The corresponding value of 
x, did not exceed 100 for almost all cases considered. Physical parameters R and K 
were determined in the course of every calculation by the formulae (2.15). Note that 
by virtue of determining the number R = Vh/v,  R > 0 corresponds to suction 
through the upper porous disk, and R < 0 to injection. For Q > 0 one needs to 
consider all values - 00 < K < 00, since the value K < 0 can be produced owing to 
the possible sign change of w as noted in $3.  For the description of all solutions for 
boundary-value problems one should find all ‘related ’ solutions of every initial-value 
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FIGURE 3. Diagram of ‘related’ solutions a t  S = 1, P < 0. P* = - 1.5603, &, = 0. 

problem. Existence domains of the ‘related ’ solutions on the plane P, Q are shown for 
the case 6 = - 1 in figure 2 and for 6 = 1 in figure 3. In  the region above the curves 
0 and 0’ there are no solutions satisfying boundary conditions (2.10). Below these, 
curves 2 and 2‘ up to the curves 4 and 4’’ there are four ‘related’ solutions and so on. 
All curves of pair production of ‘related ’ solutions meet at the singular point (P*, Q*) ,  
being a focus to which these curves are spiralling. All xmi --f co on approaching this 
point. Also, a t  the dotted curve and the axis Q = 0 all xmi + co, except xm,. Thus, the 
plane P, Q is divided by the dotted curve in two domains. On this curve as well as on 
the axis Q = 0 all Ri = - co, except R,, which remains finite and changes 
continuously. The values of Ki, except K,, undergo a discontinuity at the dotted 
curve. Thereby, regimes with a sign-changing rotation are located to the right of the 
dotted line. K,+O when Q + O ,  corresponding to the solution of the problem of 
uniform suction without rotation. K ,  changes sign continuously on a particular curve 
( K ,  = 0): this corresponds to the bifurcation phenomenon of the rotational regime 
discussed in $3. The results of figure 4 are obtained if Q (K = 0 and cannot serve as 
the rotation characteristic) is assumed as the measure of the rotation rate. The 
critical value Rcrit = 6.5 agrees quite well with the estimation of $3.  As is seen from 
figure 4, the excitation is mild, indicative of the stability of a new regime and 
instability of an initial one (Arnol’d 1978). 

In the case 6 = 1 the situation is essentially similar to that for 6 = - 1. Here there 
is also a point (P*, Q,) see figure 3, where R = - co (P* = - 1.5603, Q* = 0). The ray 
Q = 0, IPJ 2 I P*I is a particular line, on which R = - co. The difference is that 
solutions exist only a t  P < 0. Since all solutions can be obtained from the solutions 
with S = - 1 by extrapolation through the point P = - 00 then there is an odd 
number of them between these curves and at P < 0 a t  least one solution exists. In 
region I above curve 1 there is one solution ; in region 111 between curves 1 and 3 
there are three solutions, etc. All these regions are subtended into essentially the 
particular point (P*, Q * ) .  The solution with Q = 0 and 0 > P > P* corresponds to 
pure injection. Note that for injection the rotation bifurcation is not observed, in 
agreement with the analysis of $3.  Information on ‘related’ solutions of the initial- 
value problem allows the classification of these solutions of the initial boundary- 
value problem. For injection the regime map in terms of the physical variables R and 
K is shown in figure 5. There are one, three, five, etc. solutions in regions I, 111, V, 
etc. respectively. These solutions differ topologically both with respect to the number 
of cells and the presence of counter-rotation. In region I the solution has one or two 
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FIGURE 4. Isolines K = const for unicellular regimes on the plane of parameters R,  Q ,  8 = - 1. 
Isolines with K > 0 originate from the point ( 0 , O )  and those with K < 0 from the point ( C O , ~ ) .  The 
curve K = 0 is a bifurcation autorotation curve. Bifurcation takes place at Rcrtt = 6.5. With the 
increase of R all isolines tend to the asymptote Q = Q ,  (for the solution with K < 0 there is a second 
asymptote Q = 0). 

cells and rotation of constant sign. In region 111, apart from the above-mentioned 
solution, there are two more. Both have a sign-changing rotation, but the first 
solution is unicellular and the second one is bicellular. In region V two more solutions 
are added, both characterized by sign-changing rotation. Additional solutions are 
not related to the initial stable solution by the bifurcational curve and they are 
isolated. 

It is of interest to compare the results of the non-viscous analysis ($3) with 
numerical calculations a t  large Reynolds numbers. It should be pointed out that in 
practice within the frames of the calculation method proposed it is only possible to 
obtain large Reynolds numbers ( -  10'-lo5) in the case of injection. For suction, with 
the increase of R at given K the values (P, &) -+ (P*, &*) asymptotically spiralling to 
the limiting point. It increases significantly the requirements of the calculation 
accuracy, and does not allow solutions for large values of R to be obtained with the 
available computer accuracy. On the other hand, as it has been pointed out in $3, at 
suction non-classical boundary layers arise, reflected in fact in these indicated 
difficulties of numerical calculation. 

A possible qualitative picture of the solution behaviour for R --f co (u  -+ 0) in the 
case of injection has been presented in the previous section, where it was stated that 
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FIGURE 5. Diagram of flow regimes at injection. In  the figure the insets show the characteristic 
features of v, (-) and o (----) for each solution of regions I and 111. The stable solutions are 
denoted by an unbroken frame and the unstable solutions by a dotted frame. Below dotted line 1 
the solution has one cell, above it, two cells. Curve 2 is a boundary of region 111. Curve 3 is a 
boundary of region V. 

additional solutions are possible only for K > in. At first glance this fact is in 
contradiction with the presence of the type-b, solutions in region 111 in figure 5 .  The 
present solutions have a maximum velocity v, inside the flow regime that is not true 
for (3.10). Numerical calculations show that with the increase of R, internal motion 
is enhanced to a larger degree than the flow near the boundary z = h, so that in the 
limit the solution becomes close to an ‘eigen’ one corresponding to (3.6) at k - t x .  
Therefore solutions of type b have no non-viscous limit. Possibly, this explains the 
difficulties in numerical calculations, when Reynolds number of not more than 50 can 
be obtained for such solutions, whereas the Reynolds number constructed with 
respect to the maximum velocity is - los. The above peculiarities of the flow raise 
a question of rigorous mathematical analysis of the existence loss of some stationary 
solutions at v + 0. However, as is shown below, all these solutions are unstable and 
therefore are of no physical interest. 

Solutions arising in region V have non-viscous limits corresponding to composite 
solutions (3.10), (3.13), (3.14). This is confirmed by the properties of numerical 
solutions at large values of R. Thus, the quantity k = v,(z)/ho(z) is an adiabatical 
invariant in the case of small viscosities. This invariant changes abruptly on crossing 
the internal boundary layer according to the law 

k, = -ik,-,, V < 0, 

coinciding with (3.15). In this way (3.12), obtained by the method of matched 
asymptotics, has been numerically confirmed over the entire viscous solution. 

Maps of regimes for the flow with suction are presented in figure 6. In region I there 
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FIGURE 6. Diagram of flow regimes a t  suction. The insets present the characteristic behaviour of 
velocities u, (-) and o (----). The unbroken frame means that solution is stable and the dotted 
one that it is unstable. On crossing the dotted curves 1 and 6 the character of the flow 
corresponding to this solution changes as A +A' and B,  +B', respectively. On crossing curve 4 in 
region V the character of flow changes so that the unstable solution C, transforms into a stable one 
Ci. On crossing the boundary formed of the upper part of curve 4 and the dotted curve 5 the 
solution C, transforms to C;, remaining unstable. 

is one stationary solution, in regions 111, 111' there are three, in regions V, V' five, 
and so on. Curves 2 and 3 are boundaries of regions 111 and 111' respectively, the 
intersection region of which is denoted as V-V'. In  region I the solution is stable and 
has one cell with sign-constant rotation. Boundary 2 originates a t  the point K = 0, 
R = Rcrit = 6.5, so that the solution in region I11 exists because of the bifurcation of 
rotation at this point. One of these solutions is unstable, B,-B;;  another is stable, 
B,. Both are unicellular with sign-changing rotation. In  region I11 there are two 
additional unstable solutions, C ,  and C,, but they are not related to the previous 
solutions by a bifurcational curve. Both these solutions have a sign-changing 
rotation. C ,  is two-cellular and C ,  is three-cellular. Thus in the region to the left of 
curve 2 the unique stable solution A-A' exists. In  the region to the right of 2 two 
metastable solutions, A-A' and B,, exist. In the region to the right of curve 4 there 
are three metastable flow regimes, A', B,  and C;. The boundaries 2, 3 and 4 are 
obtained by the projection on the (R, K)-plane of the three-dimensional bodies shown 
in figures 7 and 8 ; moreover the stable flow regime C; corresponds to anomalously 
high lift. As is shown in $ 3  in the case of suction only three types of solution are 
asymptotically possible, but in figure 6 we have more of them. The fact is that not 
all solutions have a non-viscous limit as in the case of injection. Solutions of type C 
in figure 6 are like these, though it  should be noted that some of them are stable at 
finite R. 

As stated in the Introduction, in the case of injection the flow between disks 
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FIGURE 7. Variation of the lift F(R,  K )  for the family of unicellular solutions for the case of suction 
( R  > 0). and one- and two-cellular solutions for the case of injection. At injection (on the 
background) there is a separate unconnected surface consistent with additional unstable solutions 
(region V in figure 5) .  The break corresponds to a particular point P*, Q*, 6 = - 1. In  the foreground 
one can see the deep fold originating because of the bifurcation of rotation a t  K = 0. Isolines 
F = const and R = const are plotted on this surface. 

models the flow under a body suspended on an air cushion. It is of interest to observe 
the effect of the porous-disk (body) rotation on the magnitude of the lifting force. At 
first glance rotation must decrease the lifting force acting on the porous disk. This 
is true for unicellular solutions. For multicellular solutions the situation changes 
sharply. Figure 7 shows the families of unicellular solutions in the form of a surface 
in three-dimensional space 8, R, K ,  where 9 is the lifting force determined according 
to (2.16). The lifting force F in figure 7 is shown in non-dimensional form by the 
multiplier xk S from (2.16). The solution surface is formed by the isolines F = con& 
and R = const. This surface has two unconnected parts and a rather complicated 
form. In the foreground, which corresponds to the flow with suction, it is easy to see 
non-uniqueness of solutions originating because of the rotation bifurcation. This 
bifurcation forms a deep fold on the surface of solutions and results in the appearance 
of solutions with large negative values of the lifting force. We can see from the same 
figure that in the background for another unconnected part of the solution surface, 
corresponding to injection, a region of values of R and K also exists where the 
solution is not unique, namely, one can find R and K values at which solutions with 
a different lifting force are realized. As one would expect, a positive lifting force 
originates only for the flow with injection (R < 0) and decreases with the increase of 
the twisting parameter K up to  zero on the dot-and-dash curve. At large values of K 
the lifting force is negative. On further increase of K a discontinuity of the solution 
surface and transition to another branch of solutions are observed. In  the (P,Q)-  
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FIQURE 8. Variation of the lift F ( R , K )  for the family of solutions with two and three cells in the 
case of suction (R > 0). On the surface, isolines F = const and R = const are plotted. The front of 
the surface with the large lift (F > 0) corresponds to a metastable two-cellular solution. 

plane the singular point (P*, Q,)  at  S = - 1 corresponds to the surface discontinuity. 
It should be noted that the choice of the region with positive K does not necessarily 
correspond to the values Q 2 0 and, by virtue of the invariance of the W ( x )  function 
with respect to substitution of Q by - Q  or K by - K ,  the solution surface is 
transformed symmetrically with respect to the plane K = 0 since, for such 
substitutions, y ( x )  changes only its sign. 

The surface in three-dimensional space F, R, K corresponding to the solutions with 
two-three cells, is shown in figure 8 for the case of suction. It is of rather complicated 
shape, with self-crossings being possible. An interesting peculiarity of the solutions 
considered is that a positive lifting force now originates in the problem of suction, 
and it is an order of magnitude greater than the value of the lift in the problem of 
injection with unicellular solutions at  the same IRI and IKl. The behaviour of 
additional solutions also turns out to be paradoxical a t  injection, leading to a very 
large sinking force. This is illustrated in figure 9, which shows a surface in (F,  R, K)-  
space, corresponding to additional solutions in region I11 of figure 5.  If the above 
solutions with suction are stable, it would be tempting to use them in practice to 
obtain high values of the lifting force for a body on an air cushion. It is striking that 
for this purpose it is necessary to provide suction (!) but not injection. 

5.  Stability 
In the present work the stability problem is considered in the narrow sense of 

self-similar evolution by solving the nonlinear initial boundary-value problem 
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FIGURE 9. Variation of the lift P ( R , K )  for the family of additional solutions with one or two cells 
in the case of injection (R < 0 ) ,  region I11 in figure 5. Isolines F = const, R = const, K = const are 
plotted. The dot-and-dash line denotes the limiting envelope of the isolines and its projection to the 
plane F = 0 (the envelope corresponds to the curve 2 in figure 5). 

(2.8)-(2.10). Equations (2.8), (2.9) can be written in non-dimensional form as the 
following system 

where 

I a8 1 -- - - e - u f Y - 4 w w f ,  
at R 

1 U" = 8, 

Boundary conditions (2.10) for the function u ( z )  take the form 

u(0) = 0, u'(0) = 0, u(1) = +1, u'(1) = 0, (5.2) 

where the plus sign corresponds to suction and the minus sign to injection through 
the porous disk. In terms of two last conditions (5.2) can be written in the integral 
form 

1;Odz = 0, 1;zOdz = T1. (5.3) 

For w(z) we have the following boundary conditions 
w ( 0 )  = 0, w(1) = K .  (5.4) 

Initial conditions for the function u, 8, w should satisfy (5.2)-(5.4) and they are 
arbitrary in the other respects. 
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FIQURE 10. Profiles of v,(z) ,o(z)  velocities for the flow between the fixed porous disk (K = 0 ) ,  with 
uniform suction 8, and the impermeable plane at R = 10. The solution has been obtained by the 
evolution of some arbitrary distribution of velocities, which satisfy the boundary conditions and 
w,,(z) + 0. Setting time is t, % 10. Profiles of velocities are given for t = 15. 

Calculations have been carried out by a finite-difference method of second-order 
accuracy using an explicit scheme, the integral conditions (5.3) being satisfied 
with algebraic accuracy using the trapezium formula. These conditions are used for 
computation of the boundary values O(0) and O( 1) by internal values of the function 
O(z )  that allow the use of the boundary condition of the first kind a t  every executed 
step for (5.1). 

First, the stability of the flow corresponding to spontaneous arising of the fluid 
rotation between fixed disks has been investigated. As one would expect, the solution 
without rotation lost stability at suction when the Reynolds number exceeded the 
critical value Rcrit = 6.5 and evolved to the stationary solution with rotation found 
previously. The evolution had a monotonic character up to Reynolds number R - 9 
and it was of oscillating nature when R was larger. The velocity profiles a t  R = 10 
are shown in figure 10. 

The investigation of the solution stability in the case of injection has shown that 
only one- or two-cellular flow regimes of a-type (figure 5) are stable and their 
azimuthal velocity does not change sign in the whole domain 0 < z < 1. These 
regimes exist a t  all values of R and K .  All additional solutions corresponding to the 
sign-changing function w ( z )  are unstable. Calculations have proved that the stable 
solutions tend to the non-viscous limit (3.6), (3.7) or (3.10) with the growth of IRI, if 
K > &r. In the last case, solutions with an internal boundary layer are realized. Thus, 
in the case of injection the stable solution is unique for any given R and K .  

In the case of suction the flow pattern undergoes essential modifications. The first 
fact that is necessary to point out is the presence of several stable stationary flow 
regimes (figure 6). So, besides the unicellular A-type solutions with a sign-constant 
azimuthal velocity, the stable unicellular solutions of B, and Ci types with the sign- 
changing w ( z )  exist. The presence of several stable stationary solutions is closely 
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FIGURE 11. Non-dimensional friction 7,, = O(1, t ) / R  and a = e'(0, t ) / R  as a function of time for the 
Ci solution (figure 6) corresponding to high lift and suction. R = 30, K = 20. The solution is periodic 
with period T = 0.4. There is a lead in phase shift A$ - 20" between 7, and a. Setting time for the 
periodical flow is t ,  % 5. 

related to the above-mentioned rotation bifurcation. Curve 2 in figure 6, restricting 
the existence region of additional stable solutions, starts from the point K = 0, 
R = Rcrit = 6.5. In the region to the right of curve 2 the solutions are bistable. 

Depending on the initial conditions (o,(z) is sign-constant or changes the sign 
inside the flow region), evolution results in one or other stationary solution. Note 
that two additional stationary solutions appear to the right of curve 2, but only one 
of them is stable. Above curve 3 two more new unstable stationary solutions appear. 
However, one of these solutions, Ci, becomes stable when crossing curve 4, with its 
topological structure changing. This solution has two cells and sign-changing 
rotation. It corresponds to large lifting forces acting on a porous rotating disk. Thus, 
solutions with a large lifting force, discussed in the previous section, turn out to be 
stable, or more precisely metastable in some range of parameters R ,  K .  The frontal 
part of the surface with F > 0 in figure 8 corresponds to them. In  particular, 
two-three-cellular distributions of velocity w,(z) with the sign-changing w(z)  evolve to 
these solutions. However, stationary solutions with a large lifting force still lose 
stability with the increase of Reynolds number R (not shown in figure 6, R"' > 20) 
and a time-periodic solution arises, i.e. a stable limiting cycle originates. Non- 
dimensional friction T,, = e ( l , t ) / R  and a(t)  = el(O,t)/R are shown as a function of 
time in figure 11 for the case R = 30,K = 20. It is easy to see that the solution is 
periodic with non-dimensional period T = 0.4. With further increase of the time, 
dependence becomes complicated. Such behaviour in the solution of the boundary- 
value problem (5.1)-(5.3) resembles qualitatively the solution behaviour of dynamic 
systems, in particular the Lorentz system. Therefore, it is possible that there is 
critical Reynolds number RC'(K) at which the attracting set of unsteady solutions 
will acquire the features of a strange attractor and the solution will become chaotic. 
Unfortunately the investigation into the solution behaviour of the non-stationary 
boundary-value problem (5.1)-(5.3) by the way of evolution becomes still more 
complicated with the increase of R ,  and the presence of the additional parameter K 
complicates the problem yet more. Therefore the emergence of chaos for exact 
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FIQURE 12. Profiles of w,(z),w(z) velocities for the flow with suction at high Reynolds numbers, 
R = 100, K = 2. The solution has been obtained by the evolution of some arbitrary initial 
distribution of velocities satisfying the boundary conditions and w&) 3 0. The result of the 
evolution is a solution with w, = const and w = const in the core of the flow. It is seen that on crossing 
non-classical vigorous boundary layers a jump of normal velocity w, occurs. Setting time is t ,  z 10. 
Profiles of velocities are given at t = 13. P = 1.106, Q = 0.454, a = 45.4, 6 = - 1 .  

solutions of the Navier-Stokes equations (the self-similar solutions considered here 
are of that type) requires additional analytic and numerical investigations. 

Another non-trivial property of solutions with suction is the non-classical non- 
viscous limit at R- t  CQ. As has been shown in $3, a non-viscous solution can behave 
in rather a non-standard manner ((3.19), (3.20)) in the presence of a boundary layer 
on porous disk at z = 1,  which is realized only in the case of suction. Not only the no- 
slip conditions but also the conditions of impermeability (!) are not satisfied for this 
solution. Computations a t  large R have shown that this non-viscous limit turns out 
to be stable in the sense of self-similar evolution. Characteristic velocity profiles are 
presented in figure 12 a t  R = 100, K = 2. Both stable unicellular solutions A’ and 
B, (figure 6) tend to this limit with bistability of the flow preserved also a t  R 9 1, 
consistent with (3.20). 

The problem of the solution stability has been considered only for the class of 
arbitrary self-similar disturbances. The general case is rather extensive and should be 
the subject of additional research. 

6. Discussion of results 
Some of the results obtained require additional discussion and interpretation. So, 

the problem is formulated in the infinite region with the velocities v, and vup unlimited 
a t  infinity. The question arises as to whether the revealed properties of the solutions 
obtained are due to these infinities. One of these properties is non-uniqueness. If the 
axisymmetric flow in a finite cylindrical region of radius L is examined then the 
complete formulation of the boundary-value problem includes representation of 
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the velocity field a t  r = L. In this case only special boundary conditions will lead to 
the self-similar solutions. Since different boundary conditions ‘meet different self- 
similar solutions, the non-uniqueness of self-similar solutions does not mean the non- 
uniqueness of initial boundary-value-problem solutions. From this point of view the 
non-uniqueness obtained is formally fictitious. However it can have real physical 
content if we assume that self-similar solutions possess the property of asymptotic 
stability with respect to variations of boundary conditions a t  r = L. It means that 
with deviation from the special ‘self-similar’ boundary conditions a t  r = L ,  the flow, 
nevertheless, tends to a self-similar one in its core and details of velocity distribution 
at r = L are ‘forgotten’ in some transitional non-self-similar zone. In the whole such 
behaviour is typical for dissipative systems and it is not impossible for the problem 
considered here under the condition of the stability of corresponding self-similar 
regimes. In  such a case the space of all possible boundary conditions is divided into 
a number of subspaces which are subtended by the corresponding self-similar 
solutions. If this is so, then non-uniqueness of self-similar solutions will correspond 
to real ambiguity of limiting flow regimes in the region of small r .  In this case the role 
of the boundary conditions at r = L will be reduced to switching the regimes. An 
experiment is likely to confirm that. In  various experimental installations different 
self-similar conditions of the flow do in fact occur at the same Reynolds number, as 
has been pointed out in the Introduction. 

The non-uniqueness property under discussion is manifested most vividly a t  the 
bifurcation of rotation in the case of suction. Spontaneous occurrence of rotation in 
the purely axisymmetric case seems to be impossible at first glance. This follows 
directly from (2.2) which is a quasi-linear equation for circulation r = rv4. Since the 
equation contains no variable r, the two-sided maximum principle (Courant & 
Hilbert 1951) is valid for it : the maximum and minimum are obtained on the region 
boundary. Thus, if r = 0 on the boundary, the arbitrary initial disturbances will be 
damped. But this absolutely correct conclusion relates only to the flows ‘fixed’ on 
the boundary by the condition r = 0. Hence, the occurrence of self-rotation is 
possible only owing to a more subtle mechanism: first the flow loses stability with 
respect to non-axisymmetric disturbances and then a stable secondary regime with 
non-zero mean rotation develops. This is the way that self-rotation of round jets 
occurs under certain conditions (Goldshtik, Zhdanova & Shtern 1985). 

The motion presented herein is not ‘fixed ’ on its external cylindrical boundary. 
On the contrary, KBrman’s solution (2.5) satisfies the condition of the absence of 
rotational stress : 

i.e. any external boundary r = L may be considered as ‘free’ for rotational motion. 
At boundary condition (6. l),  axisymmetric spontaneous arising of rotation is not 
forbidden and it may principally be observed during an experiment. It would 
undoubtedly occur in the case of uniform boundary conditions 

which in combination with the condition (6.1) admit the existence of an exact self- 
similar KBrmBn solution in the entire region of the flow. However, boundary 
conditions (6.1)’ (6.2) are not standard for a hydrodynamic problem and the question 
of their physical realization in an experiment is still open. It is clear that one of the 
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FIGURE 13. Diagram of experimental facility. 1, supply of liquid (distilled water) under pressure; 
2, distribution holes; 3, transparent cover; 4, transparent fixed disk; 5 ,  liquid supply t o  twist the 
main flow directing tube; 6, metal screen (fixed porous disk); 7, flow region under investigation 
(transparent disk radius versus clearance L,/h = 36, screen radius versus clearance L / h  = 28); 
8, liquid withdrawal; 9, dye supply through fine capillary for flow visualization. 

ways of approximated realization of the condition (6.1) is to set the appropriate 
external rotation at r = L .  But then the problem of bifurcation of rotation acquires 
another sense and must be reformulated. Let distribution wo(z )  be given on the 
boundary r = L.  Then for R < Rcrit = 6.5 there is a stationary self-similar solution 
us(%) = 0. Under these conditions one would expect the emergence of a non-self- 
similar zone Lo < r < L ,  where the fast fall of real w ( r , z )  from wo(z )  to w(Lo , z )  x 0 
occurs, so that the rotation in the self-similar core of the flow is practically absent. 
In the case R > Rcrit,us(z) + 0, so that rotation should penetrate into the core and 
attain here a quite definite magnitude depending on R alone, and not on wo.  If 
wo > w, a non-self-similar zone should arise again, where w(r,  z )  decreases fast with the 
decrease of r.  In  the case wo < w, a growth of w in the non-self-similar zone should 
take place that is consistent with the tendency of fluid to maintain the circulation r, 
though at  wo < o, self-rotation cannot be attained. From the viewpoint of these 
considerations the bifurcation of rotation indicates the qualitative reconstruction of 
the flow a t  R = Rcrit, which admits experimental verification. To this end we have 
performed special tests. Figure 13 shows the experimental installation. A rigid metal 
screen has been used as the porous disk; therefore the no-slip conditions on the 
porous disk (screen) are not satisfied because of the presence of slipping sections 
between adjacent wires. To compare the experimental results with the theory, the 
problem with slipping conditions on porous disk has been calculated : 

which, in the variables of (2.11), has the form 

T(z,) = 0, y'(x,) = 0. (6.4) 

In  this case unicellular-solution rotation bifurcation also takes place, shown in the 
(R,K)-plane in figure 14. The critical Reynolds number is RE,, = 1.7. 
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FIGURE 14. Bifurcation of self-rotation branch under the condition of slipping on the porous 
disk in physical plane R,  K .  

I n  our experiments to detect the bifurcation of rotation on the external boundary 
of disks, a sufficiently large continuously acting twist of inflow was developed, 
without which fluid rotation in self-similar zone was not observed. With the help of 
visualization by coloured jets we have found that a t  R < 1.7 in the region adjacent 
to the axis the flow remains untwisted for all external twists possible in the 
experiment. At R x 1.7 kO.1 a flow is reconstructed when rotation arises near the 
axis, independent of the value of external rotation. Thereby the experiments confirm 
the existence of the rotation bifurcation and testify to the stability of the rotational 
flow regime. Thus, the statement about the stability of a secondary regime with 
rotation relative to  self-similar disturbances, which has been obtained numerically 
by evolution ($5) ’  turns out also to be correct for any disturbances. This allows the 
hope that solutions with a large lifting force, which are stable with respect to self- 
similar disturbances, can be realized experimentally, though one should take into 
account that under conditions of non-uniqueness they can turn out to be metastable 
with an unknown ‘reserve’ of stability. One should bear in mind that for the 
experimental realization of two-cellular flows of type C/, (figure 6) with large lifting 
forces the boundary conditions at r = L should correspond to the two-cellular 
structure of flow shown in figure 15: practically this means the need for powerful 
peripheral injection with intensive twisting. From this point of view it  is quite 
natural that  large lifting forces arise in the case of suction with counter-rotation and 
it is extremely probable that suction stabilized the flow with a high-pressure zone 
under the disk. It would be of interest to  verify experimentally these suggestions. 

7. Conclusion 
Thus, non-uniqueness and complex dependence on parameters of the exact self- 

similar solutions of the Navier-Stokes equations for incompressible fluid flow 
between a rotating porous disk and an impermeable plane have been found. This 
non-uniqueness is manifested most vividly in the bifurcation of rotation for the flow 
between a fixed disk and a plane a t  sufficiently intensive suction. The other 
unexpected effect is an anomalously large increase of lifting force a t  some velocities 
of the disk rotation and fluid suction, and the flow regimes realized are stable in the 
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FIGURE 15. Velocity profiles : 1 ,  v z ;  2, vr, for the solution with suction R = 20, K = 20, normalized 
by the suction velocity. The stationary solution obtained by evolution coincides with additional 
solutions of stationary equations and corresponds to the flow with anomalously high lift (solution 
C; in figure 6). In the upper left-hand corner streamlines are shown corresponding to this flow. 
Setting time is t ,  x 5 .  Velocity diagrams are given for t = 8. 

sense of self-similar evolution. With the increase of the suction velocity these regimes 
become self-oscillating. At large suction two stable stationary flow regimes with non- 
classical boundary layers are realized. In the case of injection there is a unique stable 
stationary regime. Bifurcation of rotation has been proved experimentally, allowing 
the hope of obtaining in an experiment the regimes with suction and anomalously 
large lifting force. 

Clearly, all results are obtained for laminar flows. But since the solutions obtained 
are characterized by volume gradients and internal boundary layers, one can expect 
that turbulence will be of a free nature. Then the results of the analysis remain valid 
if constant turbulent viscosity is introduced (Goldshtik 1981). These considerations 
provide a basis for a more thorough experimental investigation of the motion under 
consideration with a view to not only its study but possible practical applications as 
well. 

The authors would like to thank A. V. Lebedev for his assistance in the 
experiments and express t,heir gratitude to  referees who contributed much to  the 
improvement of the work. 
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